
Existential Graphs 

Computability and Logic 



Existential Graphs 

• A graphical logic system developed by C.S. Peirce 
almost 100 years ago. 

• Peirce studied semiotics: the relationship between 
symbols, meanings, and users.  
– Peirce stressed the power of iconic representations 
– Existential Graphs allow the user to express logical 

statements in a completely graphical way. 
• Alpha (Propositional Logic) 
• Beta (Predicate Logic) 
• Gamma (Modal Logic) 



Alpha 

• Alpha is the part of Existential Graphs (EG) 
corresponding to propositional (or truth-
functional) logic (PL). 

• This presentation covers: 
– symbolization 

• from PL to EG 
• from EG to PL 

– inference 
• rules 
• Strategies 



Symbolization 
 

Sheet of Assertion 
• To assert some statement in EG, you put the 

symbolization ϕ of that statement on a sheet 
of paper, called the ‘Sheet of Assertion’ 
(SA). Thus, to assert the truth of some 
statement p, draw: 

ϕ where ϕ is the  
symbolization  
of p SA 



Symbolization 
 

Location is irrelevant 
• The location of the symbolization on the SA 

does not matter: as long as it is somewhere 
on the SA, it is being asserted. Thus: 

ϕ 

ϕ 

states the 
same as: 

• In fact, the above two graphs are regarded 
as completely identical. 



Symbolization 
 

Juxtaposition and Conjunction 
• By drawing the symbolization of two statements 

on the SA, you are asserting the truth of both 
statements at once. Hence, the mere juxtaposition 
of two symbolizations on the SA can be 
interpreted as the assertion of a single conjunction. 
Thus: 

ϕ 

γ 

can be seen as the assertion of  
both ϕ and γ, but also as  
the assertion of ϕ ∧ γ. 



Symbolization 
 

Generalized Conjunction 
• Since any number of symbolizations can be 

juxtaposed on the SA, juxtaposition becomes a 
kind of generalized conjunction that can have any 
number of conjuncts. Moreover, since the location 
of each of the symbolizations on the SA does not 
matter, no particular order on these conjuncts is 
imposed. This coincides with our abstract 
understanding of conjunction, and it is here that 
EG has an important advantage over the linear 
notation of traditional PL. An example will help: 



Symbolization 
 

Generalized Conjunction: Example 
• The top-right graph can be interpreted in any of 

the following ways in PL: 
– the assertion of 3 statements: P, Q, and R 
– the assertion of 2 statements: P and Q ∧ R 

• (or of R and P ∧ Q, or of P and R ∧ Q, etc.) 

– the assertion of a single statement: P ∧ (Q ∧ R)  
• (or of (P ∧ Q) ∧ R, or of (Q ∧ R) ∧ P, or of P ∧ (R ∧ Q), etc.!) 

• However, our abstract understanding is in each 
case the same: P, Q, and R are all, and at the same 
time, true. Hence, a single symbolization should 
suffice, and this is exactly what EG can offer us.  

P 

R 

Q 



Symbolization 
 

Cut and Negation 
• You assert the negation of some statement 

by drawing a cut (circle, oval, rectangle, or 
any other enclosing figure) around the 
symbolization of that statement. Thus: 

ϕ asserts that ϕ is false. 
 
(from now on, the SA will no 
longer be drawn) 



Symbolization 
 

Empty Graph and Tautology 
• Any blank piece of paper can be seen as an ‘empty 

graph’. Thus, any graph can be seen as the 
juxtaposition of that graph with an empty graph. 
However, since this juxtaposition should express 
the same as the original graph, any empty graph 
expresses a tautology. Another way of looking at 
this is to view any tautology as an ‘empty claim’ 
since, being a tautology, it effectively doesn’t 
claim anything at all.  



Symbolization 
 

Empty Cut and Contradiction 
• A cut without any contents is called an 

‘empty cut’. Since an empty cut negates an 
empty graph, any empty cut expresses a 
contradiction (⊥). 



Symbolization 
 

Expressive Completeness 
• Using juxtaposition for conjunction, and 

cuts for negation (and letters for simple, 
atomic statements), any compound, truth-
functional statement can be symbolized in 
EG. That is, since conjunction and negation 
form an expressively complete set of 
operators, EG is expressively complete as 
well (and EG does not need parentheses!) 



Symbolization 
 

From PL to EG 

P 

~ϕ 

ϕ ∧ γ 

ϕ ∨ γ 

ϕ → γ 

P 

ϕ 

γ 

γ ϕ 

ϕ 

γ ϕ 

Symbolization in EG Expression in PL 



Symbolization 
 

From EG to PL 

P ∧ Q   or   Q ∧ P   or   P and Q 

~(~P ∧ ~Q)   or   ~P → Q   or   P ∨ Q   or 
~(~Q ∧ ~P)   or   ~Q → P   or   Q ∨ P  

~(P ∧ ~Q)   or ~(~Q ∧ P)   or    
~P ∨ Q   or   Q ∨ ~P   or   P → Q 

Q 

Q P 

P 

Q P 

Q P ~(P ∧ Q)   or   ~(Q ∧ P)   or 
~P ∨ ~Q   or   ~Q ∨ ~P 

Possible Readings 



Inference 
 

Inference Rules 
• Alpha has four inference rules: 

– 2 rules of inference: 
• Insertion 
• Erasure 

– 2 rules of equivalence: 
• Double Cut 
• Iteration/Deiteration 

• To understand these inference rules, one 
first has to grasp the concepts of subgraph, 
double cut, level, and nested level. 



Inference 
 

Subgraph 
• The notion of subgraph is best illustrated 

with an example: 

R 

Q 
The graph on the left has the following 
subgraphs: 

Q R R 

R 

Q 

R 

Q 
, , , , 

In other words, a subgraph is any part of the graph, as long 
as cuts keep all of their contents. Any graph is a subgraph of  
itself, and empty graphs can be considered subgraphs as well. 



Inference  
 

Double Cut 
• A Double Cut is any pair of cuts where one 

is inside the other and where there is only 
the empty graph in between. Thus: 

P 

R Q 

R Q , , and contain double cuts, 

but does not. 



Inference  
 

Level 
• The level of any subgraph is the number of 

cuts around it. Thus, in the following graph: 

R 

Q 

Q 

R 

R 

R Q 

R 

Q 

is at level 2 

(the graph itself) is at level 0, 

, , and are at level 1, and 



Inference  
 

Nested Level 
• A subgraph ϕ is said to exist at a nested 

level in relation to some other subgraph γ if 
and only if one can go from γ to ϕ by going 
inside zero or more cuts, and without going 
outside of any cuts. E.g. in the graph below: 

P 

R 

Q R exists at a nested level in relation to Q, 
but not in relation to P. Also: 

Q  and R exist at a nested level in 
relation to each other. 



Inference  
 

Double Cut 
• The Double Cut rule of equivalence allows 

one to draw or erase a double cut around 
any subgraph. Obviously, this rule 
corresponds exactly with Double Negation 
from PL. 

ϕ ϕ … … … … 



Inference  
 

Insertion 
• The Insertion rule allows one to insert any 

graph at any odd level. 

ϕ … … 
1 2k+1 

… … 
1 2k+1 



Inference  
 

Erasure 
• The Erasure rule of inference allows one to 

erase any graph from any even level. 

ϕ … … 
1 2k 

… … 
1 2k 



Inference  
 

Iteration/Deiteration 
• The Iteration/Deiteration rule of 

equivalence allows one to place or erase a 
copy of any subgraph at any nested level in 
relation to that subgraph. 

ϕ … … … … ϕ … … … … ϕ 



Inference  
 

Formal Proofs 
• A formal proof in EG consists in the successive 

application of inference rules to transform one 
graph into another. 

• Formal proofs in EG are used just as in PL: 
– To show that an argument is valid, transform the graph 

of the premises into the graph of the conclusion. 
– To show that a set of statements is inconsistent 

transform the graph of the statements into an empty cut. 
– To show that two statements are equivalent, transform 

the one into the other, and vice versa. 
– To show that a statement is a tautology, transform an 

empty graph into the graph of that statement. 



Inference 
 

Sample Proof in EG 
A 

B 

DE 

DC 
E 

B H A H 

A B H 

H A B 

DE 

H 

H A B 

H ∨ B 

H→A 

~A 

B 



Inference  
 

Transforming rather than Rewriting 
• An interesting difference between doing formal proofs in 

EG and doing formal proofs in traditional systems is that in 
the former one transforms (by adding or deleting) a single 
graph, whereas in the latter one deals with multiple 
sentences, and has to do a lot of rewriting. 

• Example: Suppose we want to infer Q ∧ (R → S) from P 
and P → [Q ∧ (R → S)]. In PL, we would use Modus 
Ponens to go from two separate statements to a third, 
having to rewrite all of Q ∧ (R → S) on a separate line. In 
EG, we have a single graph being the juxtaposition of the 
symbolizations of P and P → [Q ∧ (R → S)], after which 
the second P gets deleted by deiteration and the desired 
result is obtained through the simple elimination of a 
double cut. 



Inference  
 

Proofs as Movies 
• Because graphs are being transformed rather than 

rewritten, proofs in EG are going to look quite 
different from proofs in PL. 

• Proofs become like videos that one can play, 
rewind, fast-forward, etc. 

• It would be interesting to see if this dynamic 
character of proofs has any further conceptual 
consequences as far as people are able to do 
proofs and think about proofs. 



Inference  
 

Subproofs 
• Another interesting difference between doing formal 

proofs in EG and PL is that in EG there is no need for 
doing subproofs. 

• Of course, one could define subproofs in EG, but one 
should notice that at that point one is no longer dealing 
with a single graph that is being transformed: extra formal 
machinery is needed to deal with subproofs, just as in PL. 

• The interesting fact is that the 4 inference rules of EG are 
both sound and complete, even though they don’t use 
subproofs (see “Alpha: Soundness and Completeness”). 



Inference  
 

Simulating Subproofs 
• EG does not have subproofs. However, subproofs 

can be simulated using the rules of EG in the 
following manner: 
– 1. Draw an empty double cut on level 0. 
– 2. Insert the assumption of the subproof within the 

outer cut (i.e. on level 1). 
– 3. Iterate the original graph within the inner cut, as well 

as the extra assumption. 
– 4. Manipulate the graphs on level 2 as usual. 
– 5. Use obtained result appropriately (see next slides) 

• Subproofs within subproofs can be done at levels 
2, 4, etc. 



Inference  
 

Conditional Proofs 
• Simulating Conditional Proof: 

– The assumption is the antecedent (ψ) of the desired conditional 
– After iterating the original graph (ϕ) and the assumption on the 

even level, one tries to derive the consequent (γ). 
– The result is the desired conditional. 

ϕ 

ψ 

ψ ψ ϕ ψ ϕ 

ϕ ϕ 

ϕ 

DC 

IN 

IT(2x) 

γ 



Inference  
 

Indirect Proof 
• Simulating Indirect Proof: 

– The assumption is the negation of the desired goal (ψ) 
– After iterating the original graph (ϕ) and the assumption on the 

even level, one tries to derive an empty cut. 
– Once the empty cut has been obtained, the desired goal can be 

obtained through double cut elimination. 

ϕ 

ψ 

ψ ψ ϕ ψ 

ψ ϕ 

ϕ 

ϕ ϕ 

ϕ 

ϕ ψ 

DC 

IN 

IT(2x) DC 

DC 



Inference  
 

Deriving Empty Cuts 
• Deriving an empty cut often merely requires 

the application of Erasure, Deiteration, and 
erasing double cuts. 

• In other words, one often merely has to 
eliminate parts of the graph in order to 
derive a contradiction. 
 



Inference  
 

Efficiency of Proofs 
• In traditional PL systems, there is a trade-off 

between the number of inference rules and the 
number of steps of a formal proof: if one wants a 
formal proof to require fewer steps, one has to 
introduce more inference rules, and if one wants 
fewer inference rules, formal proofs will require 
more steps. 

• While EG has fewer rules (4) than traditional PL 
systems (10 to 20), proofs in EG usually require 
fewer steps! 



Inference  
 

Ease of Proofs 
• Although hard empirical data needs to be 

gathered, doing proofs in EG seems to be easier 
than doing proofs in PL. Possible reasons for this: 
– Graphical representation 
– Transforming rather than rewriting 
– No Subproofs 
– Fewer rules, fewer steps. 
– Ease of deriving empty cut. 



Existential Graphs Home Page 

• You can read more about Existential 
Graphs, and play with a (somewhat) 
working Existential Graphs applet at: 
http://www.cogsci.rpi.edu/~heuveb/research
/EG/eg.html 

• Programmers needed! 
– Possibility of paid summer research position 
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